quinta-feira, 11 de julho de 2013

O SEQUESTRO DO CARBONO E O EFEITO ESTUFA

CAIU NO ENEM


O "sequestro de carbono" e o efeito estufa


Quando deparados com o tema, muitos estudantes se indagam: o tão falado "sequestro de carbono" seria a solução para o problema do agravamento do efeito estufa?

Efeito estufa e aquecimento global

Em primeiro lugar, vamos deixar claro o que é o famoso efeito estufa. Ele se caracteriza por uma retenção, por parte da atmosfera terrestre, do calor irradiado pelo Sol. É exatamente a ideia que move o funcionamento de uma estufa convencional para plantas, por exemplo.

O efeito estufa, muito ao contrário de ser prejudicial, é uma das causas da existência da vida na Terra. Sem a temperatura média do nosso planeta, teria sido impossível o desenvolvimento da vida como a observamos.

efeito estufa aquecimento global
Efeito estufa | Fonte

O problema se dá na medida em que, graças ao crescimento da população humana e o consequente desenvolvimento das cidades, passa a ser uma realidade o desmatamento e o uso de combustíveis fósseis. O agravamento do efeito estufa, causa do aquecimento global, é um problema na medida em que pode interferir no volume das calotas polares, no ciclo de vida de muitas espécies animais e vegetais tendo, teoricamente, como ponto final o aumento do nível dos oceanos, a desertificação, alteração no regime de chuvas e diminuição da biodiversidade.

Sequestro de carbono

O termo "sequestro de carbono" se refere ao plantio de árvores que, em seu desenvolvimento, consomem uma grande quantidade de gás carbônico da atmosfera (necessitam do carbono como "matéria prima"). Na prática, os países que mais poluem pagariam aos que poluem menos para que, estes, plantassem árvores que, num balanço final, consumiriam o dióxido de carbono, fruto da poluição daqueles.


Alguns críticos consideram equivocada a ideia de ter o sequestro de carbono como solução final, já que, de certa maneira, seria uma maneira de poluir mais com a desculpa de que as árvores plantadas "anulariam" o efeito da poluição.

MARÉ VERMELHA E EUTROFIZAÇÃO

FENÔMENOS ECOLÓGICOS IMPORTANTES

Maré vermelha

maré vermelha

Desde os tempos mais remotos, o homem conhece o fenômeno da maré vermelha, que ocorria em certas épocas do ano no Egito, tornando a água do Nilo avermelhada, cor de sangue, imprópria para o consumo.

No verão, o fenômeno é comum devido á maior oferta de luz e calor, fatores que elevam a temperatura das águas para 25ºC, o que favorece o aparecimento de grandes manchas avermelhadas na costa litorânea ou em enseadas, privando os banhistas de um mergulho nas praias.

É o fenômeno da maré vermelha provocado pelo aumento exagerado das algas pirrófitas (ou dinoflagelados). A explosão populacional das algas (ou floração) ocorre naturalmente, mas pode ser intensificada por atividades humanas. O lançamento de esgotos domésticos in natura ou parcialmente tratados favorecem a proliferação das pirrófitas. O escoamento das chuvas arrasta lixo e fertilizantes usados na agricultura para os riachos, que deságuam nas enseadas e nos oceanos.

O excesso de nutrientes favorece a proliferação das algas, que morrem e são decompostas por bactérias aeróbicas, que esgotam o O2 dissolvido nas águas. Sem oxigênio, os grandes seres aeróbios,como peixes, crustáceos e moluscos, morrem.

Eutrofização das águas

eutrofização mortandade de peixes

A eutrofização (ou eutroficação) é o aumento de nutrientes minerais e orgânicos nos ecossistemas aquáticos. O descarte de resíduos industriais e esgotos sanitários nas águas provoca o acúmulo de compostos nitrogenados e fosfatados.

O aumento de nutrientes provoca a multiplicação acelerada e a morte das algas, o que favorece a proliferação de bactérias aeróbicas que consomem quase todo o oxigênio dissolvido nas águas. 
                                                                            Importante !!!!!!!!!!    


"A redução da taxa de O2 provoca a morte dos seres aeróbicos, como peixes e crustáceos, cujos corpos são decompostos por bactérias anaeróbicas, que liberam gases tóxicos e mal-cheirosos como o metano (CH4) e o ácido sulfídrico (H2S)."

BIOTECNOLOGIA NO VESTIBULAR

BIOTECNOLOGIA NO VESTIBULAR

De acordo com o dicionário, a palavra biotecnologia tem o seguinte significado: aplicação de processos biológicos à produção de materiais e substâncias para uso industrial, medicinal, farmacêutico, etc. Simplificando, nada mais é do que a ciência que estuda a engenharia genética dos alimentos.
A palavra biotecnologia só começou a ser utilizada no século XX, mas suas técnicas já existiam há muito tempo, mais ou menos desde o ano 1800 a.C.. Naquela época, o homem já fabricava vinho, cerveja, pão, queijo e outros produtos que eram feitos por meio da fermentação. De lá pra cá, muitas técnicas foram desenvolvidas em várias áreas diferentes. Hoje em dia, a biotecnologia já abrange a agricultura, a medicina, as indústrias farmacêutica e têxtil, entre outras áreas.
A palavra biotecnologia é formada por três pequenas palavras de origem grega:
  • bio significa vida
  • tecnos representa o uso prático da ciência
  • logos significa conhecimento
Foi depois dos anos 70, com cientistas americanos, que a biotecnologia concentrou suas atenções nas pesquisas com o DNA (material genético) e com isso foi possível criar os organismos geneticamente modificados (OGMs), também conhecidos como transgênicos. Depois de conseguir transferir genes de uma espécie para outra, foi possível evoluir as técnicas para a criação de medicamentos, hormônios, plantas modificadas e outros produtos.
Por meio de pesquisas, os cientistas podem usar a biotecnologia e a modificação dos genes para, por exemplo, transformar um alimento convencional em outro que seja mais tolerante aos herbicidas, ou desenvolver variedades de produtos enriquecidos nutricionalmente, ou ainda que ajudem os seres humanos no combate a determinadas doenças.
Você pode estar se perguntando: o que eu tenho a ver com isso? A resposta é: tem tudo a ver!
A biotecnologia é um campo que não para de crescer e ainda tem muito que evoluir.

Ao longo de nossa convivência com você, internauta ligado na ciência, a ideia sobre a biotecnologia e as perguntas que envolvem o tema ficarão mais claras, com os exemplos da aplicação dessa técnica que já tem trazido benefícios para diversas comunidades no mundo todo. Explore as seções do Biotec pra Galera, conheça mais sobre o assunto, tire suas dúvidas com os cientistas. Descubra que a biotecnologia tem tudo a ver com você!

Aplicações da Biotecnologia

Biotecnologia na medicina
A medicina utiliza muitos conhecimentos da biotecnologia. Graças a ela, hoje em dia já é possível tratar algumas doenças.
Um grande avanço da medicina foi a produção de insulina humana utilizando bactérias. A insulina é essencial para os doentes de diabetes. Antigamente, ela era produzida apenas em animais e não tinha um efeito tão bom quanto a humana.Com a transferência de genes também é possível produzir hormônios humanos, como o do crescimento.
Há também algumas técnicas para prevenir doenças. É o caso das vacinas, que, tanto para seres humanos como para animais, também contam com a biotecnologia.
Biotecnologia na agricultura
Hoje, em vários países, já existem plantações de alimentos geneticamente modificados. Esses alimentos são resistentes a pragas ou doenças e, por isso, utilizam menos agrotóxicos. Há também plantas tolerantes a herbicidas, que permitem que agricultores também usem menos agroquímicos para combater plantas daninhas. Com isso, diminuem os gastos dos produtores, além de aumentar a qualidade dos alimentos que vão pra nossa mesa. Por enquanto, esses são os maiores avanços da biotecnologia na agricultura.
Mas já existem muitas pesquisas nesta área e, num futuro bem próximo, será possível produzir alimentos com mais vitaminas e nutrientes, plantas resistentes à seca, frutas que demoram mais para amadurecer, e outros produtos cheios de vantagens. Uma pesquisa bem legal está sendo feita para criar plantas que servirão como vacinas contra várias doenças.
Outras áreas
A biotecnologia não trabalha apenas com alimentos e indústria farmacêutica, há também pesquisas em outros campos. Um exemplo é a indústria de tecidos, onde já existem pesquisas para criar um tipo de algodão que já seja colorido naturalmente. Isso aumentaria a resistência das fibras e diminuiria os gastos com o tingimento, que também causa impactos ambientais.
Já é possível também produzir plástico utilizando bactérias. Este tipo de plástico pode ser utilizado em embalagens e outros produtos e é biodegradável, ou seja, ajuda a preservar o meio ambiente.Há também pesquisas para buscar outras formas de gerar energia. Utilizando materiais como madeira, girassol, milho, soja e cana-de-açúcar, os cientistas utilizam a biotecnologia para produzir biocombustíveis, que não prejudicam o meio ambiente e que sejam mais baratos.
O que é o DNA ?
O DNA (ácido desoxirribonucleico) é o material genético onde estão guardadas as informações sobre a constituição de todos os seres vivos. O DNA é constituído por uma cadeia dupla de nucleotídeos (unidade básica das cadeias polinucleotídicas). Cada nucleotídeo possui uma pentose, um grupo fosfato e uma base azotada. No caso do DNA a pentose é a desoxirribose e as bases azotadas podem ser a guanina, citosina, adenina e timina.
Onde encontramos o DNA ?
Podemos encontrar o DNA nas células procarióticas, nos núcleos das células eucarióticas, nas mitocôndrias e nos cloroplastos. Alguns vírus também possuem DNA.
O que é uma proteína?
As proteínas são polímeros de aminoácidos, que desempenham um papel estrutural e funcional importante nos seres vivos. Existem proteínas que integram a estrutura do nosso organismo, p.e. a miosina que se encontra nos músculos, a queratina que se encontra nas unhas e nos cabelos. A hemoglobina é uma proteína que desempenha uma importante função no nosso organismo, o transporte de oxigénio. A sequência e o tipo de aminoácidos presentes numa proteína são determinados pelas sequências dos nucleotídeos da cadeia de DNA que a codifica.
O que é um clone ?
A palavra clone é utilizada normalmente para referir-se a um organismo geneticamente igual a outro por exemplo, ao "reproduzir" vegetativamente uma planta por estacaria a nova planta é um clone da planta que lhe dá origem. Porém, pode também ser utilizada para referir-se à população de organismos geneticamente iguais por exemplo, dois gémeos verdadeiros são um clone.
O que é um OGM?
OGM é uma sigla referente aos organismos geneticamente modificados. Um OGM é um organismo ao qual, com recurso às tecnologias de DNA recombinante, se alterou o material genético. Desta forma, o organismo pode apresentar uma característica que anteriormente não apresentava, ou apresentava em menor grau.


quarta-feira, 10 de julho de 2013

POESIA - FERNANDO PESSOA

Não sei quantas almas tenho

Não sei quantas almas tenho.
Cada momento mudei.
Continuamente me estranho.
Nunca me vi nem acabei.
De tanto ser, só tenho alma.
Quem tem alma não tem calma.
Quem vê é só o que vê,
Quem sente não é quem é,

Atento ao que sou e vejo,
Torno-me eles e não eu.
Cada meu sonho ou desejo
É do que nasce e não meu.
Sou minha própria paisagem;
Assisto à minha passagem,
Diverso, móbil e só,
Não sei sentir-me onde estou.

Por isso, alheio, vou lendo
Como páginas, meu ser.
O que segue não prevendo,
O que passou a esquecer.
Noto à margem do que li
O que julguei que senti.
Releio e digo: "Fui eu ?"
Deus sabe, porque o escreveu.
Fernando Pessoa

VEJA A LETRA DA MÚSICA LOBOTOMIA E INTERPRETE-A .... SUGESTIVA VESTIBULAR

Quando eu jacu, você erudição
Você pé no chão, eu aerovia.
Quando eu minoria, você população.
Quando você hindu, eu vacaria.
Quando eu caligrafia, você computação
E se você amputação, quem me abraçaria?
Quando o meu tuntum bate com o...
O teu, atrofia
E se o teu taquicardia
Aí do meu coração
Quando eu presidio do ahu, você alforria
Quando você séria, serei piração
Quando eu contusão, você anestesia
Você Capitu e eu maridão
Quando eu dragão, você antipaleontologia
E se não contraria que então senão
Quando o meu tuntum bate com o...
O teu, atrofia
E se o teu taquicardia
Aí do meu coração
Quando você no iglu, eu insolação
Quando eu maresia, 'cê jamais fumaria
Quando você Ave Maria, eu danação
Quando eu voodoo, você na sacristia
Você renascia e eu abstração
E se eu Lobão, você me lobotomia
Me lobotomia, me lobotomia, me lobotomia
(Me lobotomia, me lobotomia, me lobotomia, me lobotomia)

REPRODUÇÃO HUMANA - VÍDEO


MÉTODOS ANTICONCEPTIVOS-VÍDEO


CORPO HUMANO - VÍDEO


HITOLOGIA ANIMAL - VÍDEO


DIVISÃO CELULAR-VÍDEO


ÁCIDOS NUCLEICOS


FRASES SEM NOÇÃO...........

Frases sem noçao!!!!!!!!!!!!!!!?
Eu amo a vida, se um dia eu parar de viver eu morro!"

"Eu não me lembro de ter nascido! Deve ter sido quando eu tava apagado"

"Eu sem mim não existo!"

"Sorria na juventude.... na velhice lhe faltará dentes!"

"A vida é uma vai-e-vem que não tem volta."

"Há muitas coisas mais importantes que o dinheiro...mas elas custam caro!"

"O mundo dá tantas voltas,que não dá tempo de olhar prá trás,cuidado,sua calcinha pode estar aparecendo..."

" A vida é uma sucessão de sucessivos que sucedem sucessivamente sem cessar."

"Não importa a cor do sabão, a espuma sempre será branca."

"Nada é melhor do que a felicidade eterna... Ora, um tomate é melhor do que nada...Portanto, um tomate é melhor do que a felicidade eterna."

"O alcool é o maior inimigo do homem... e o homem que foge de seus inimigos é um covarde!"

"Onde quer que vc esteja vc sempre estará lá."

"Se a suas farras (cachaçadas) estão atrapalhando os seus estudos, deixe os estudos."

Se a vida lhe der as costas passe a mão na b.unda dela

.. e assista depois capítulo inédito de Vale a Pena Ver de Novo(Galvao bueno)

A pele estava úmida e seca

Em Esparta as crianças que nasciam mortas eram sacrificadas.

A Terra é um dos planetas mais conhecidos no mundo.


sábado, 22 de junho de 2013

DIVISÃO CELULAR - TEXTO

Divisão celular
Do mesmo modo que uma fábrica pode ser multiplicada pela construção de várias filiais, também as células se dividem e produzem cópias de si mesmas.
Há dois tipos de divisão celular: mitose e meiose.
Na mitosea divisão de uma “célula-mãe” duas “células-filhas” geneticamente idênticas e com o mesmo número cromossômico que existia na célula-mãe. Uma célula n produz duas células n, uma célula 2n produz duas células 2n etc. Trata-se de uma divisão equacional.
Já na meiosea divisão de uma “célula-mãe” 2n gera “células-filhas” ngeneticamente diferentes. Neste caso, como uma célula 2n produz quatro células n, a divisão é chamada reducional.

A interfase – A fase que precede a mitose
É impossível imaginar a multiplicação de uma fabrica, de modo que todas as filiais fossem extremamente semelhantes a matriz, com cópias fieis de todos os componentes, inclusive dos diretores? Essa, porém, no caso da maioria das células, é um acontecimento rotineiro. A mitose corresponde a criação de uma cópia da fabrica e sua meta é a duplicação de todos os componentes.
A principal atividade da célula, antes de se dividir, refere-se a duplicação de seus arquivos de comando, ou seja, à reprodução de uma cópia fiel dos dirigentes que se encontram no núcleo.
A interfase é o período que precede qualquer divisão celular, sendo de intensa atividade metabólica.Nesse período, há a preparação para a divisão celular, que envolve a duplicação da cromatina, material responsável pelo controle da atividade da célula. Todas as informações existentes ao longo da molécula de DNA são passadas para a cópia, como se correspondessem a uma cópia fotográfica da molécula original. Em pouco tempo, cada célula formada da divisão receberá uma cópia exata de cada cromossomo da célula se dividiu.
As duas cópias de cada cromossomo permanecem juntas por certo tempo, unidas pelo centrômero comum, constituindo duas cromátides de um mesmo cromossomo. Na interfase, os centríolos também se duplicam.

A interfase e a Duplicação do DNA
Houve época em que se falava que a interfase era o período de “repouso” da célula. Hoje, sabemos, que na realidade a interfase é um período de intensa atividade metabólica no ciclo celular: é nela que se dá aduplicação do DNA, crescimento e síntese. Costuma-se dividir a interfase em três períodos distintos:G1S e G2.
O intervalo de tempo em que ocorre a duplicação do DNA foi denominado de S (síntese) e o período que antecede é conhecido como G1 (G1 provém do inglês gap, que significa “intervalo”)O período que sucede o S é conhecido como G2.


O ciclo celular todo, incluindo a interfase (G1, S, G2) e a mitose (M) – prófase, metáfase, anáfase e telófase – pode ser representado em um gráfico no qual se coloca a a quantidade da DNA na ordenada (y) e o tempo na abscissa (x). Vamos supor que a célula que vai se dividir tenha, no período G1, uma quantidade 2C de DNA (C é uma unidade arbitrária). O gráfico da variação de DNA, então, seria semelhante ao da figura abaixo.

Nas células, existe uma espécie de “manual de verificação de erros” que é utilizado em algumas etapas do ciclo celular e que é relacionado aos pontos de checagem. Em cada ponto de checagem a célula avalia se é possível avançar ou se é necessário fazer algum ajuste, antes de atingir a fase seguinte. Muitas vezes, a escolha é simplesmente cancelar o processo ou até mesmo conduzir a célula à morte.

 As fases da mitose

A mitose é um processo contínuo de divisão celular, mas, por motivos didáticos, para melhor compreendê-la, vamos dividi-la em fases: prófase, metáfase, anáfase e telófase. Alguns autores costumam citar uma quinta fase – a prometáfase – intermediária entre a prófase e a metáfase. O final da mitose, com a separação do citoplasma, é chamado de citocinese.

Prófase – Fase de início (pro = antes)
  • Os cromossomos começam a ficar visíveis devido à espiralação.
  • O nucléolo começa a desaparecer.
  • Organiza-se em torno do núcleo um conjunto de fibras (nada mais são do que microtúbulos) originadas a partir dos centrossomos, constituindo o chamado fuso de divisão (ou fuso mitótico).
Embora os centríolos participem da divisão, não é deles que se originam as fibras do fuso. Na mitose em célula animal, as fibras que se situam ao redor de cada par de centríolos opostas ao fuso constituem o áster (do grego, aster = estrela).
  • O núcleo absorve água, aumenta de volume e a carioteca se desorganiza.
  • No final da prófase, curtas fibras do fuso, provenientes do centrossomos, unem-se aos centrômeros. Cada uma das cromátides-irmãs fica ligada a um dos pólos da célula.
Note que os centrossomos ainda estão alinhados na região equatorial da célula, o que faz alguns autores designarem essa fase de prometáfase.


A formação de um novo par de centríolos é iniciada na fase G1, continua na fase S e na fase G2 a duplicação é completada. No entanto, os dois pares de centríolos permanecem reunidos no mesmo centrossomo. Ao iniciar a prófase, o centrossomo parte-se em dois e cada par de centríolos começa a dirigir-se para pólos opostos da célula que irá entrar em divisão.
 Metáfase – Fase do meio (meta = no meio)
  • Os cromossomos atingem o máximo em espiralação, encurtam e se localizam na região equatorial da célula.
  • No finalzinho da metáfase e início da anáfase ocorre a duplicação dos centrômeros.


Anáfase – Fase do deslocamento (ana indica movimento ao contrário)
  • As fibras do fuso começam a encurtar. Em conseqüência, cada lote de cromossomos-irmãos é puxado para os pólos opostos da célula.
Como cada cromátide passa a ser um novo cromossomo, pode-se considerar que a célula fica temporariamente tetraplóide.

 Telófase – Fase do Fim (telos = fim)
  • Os cromossomos iniciam o processo de desespirilação.
  • Os nucléolos reaparecem nos novos núcleos celulares.
  • A carioteca se reorganiza em cada núcleo-filho.
  • Cada dupla de centríolos já se encontra no local definitivo nas futuras células-filhas.

Citocinese – Separando as células
A partição em duas copias é chamada de citocinese e ocorre, na célula animal, de fora para dentro, isto é, como se a célula fosse estrangulada e partida em duas (citocinese centrípeta). Há uma distribuição de organelas pelas duas células-irmãs. Perceba que a citocinese é, na verdade a divisão do citoplasma. Essa divisão pode ter início já na anáfase, dependendo da célula.

 A Mitose na Célula Vegetal
Na mitose de células de vegetais superiores, basicamente duas diferenças podem ser destacadas, em comparação com que ocorre na mitose da célula animal:
  • A mitose ocorre sem centríolos. A partir de certos locais, correspondentes ao centrossomos, irradiam-se as fibras do fuso. Uma vez que não há centríolos, então não existe áster. Por esse motivo, diz-se que a mitose em células vegetais é anastral (do grego, an = negativo);
  • A citocinese é centrífuga, ocorre do centro para a periferia da célula. No início da telófase forma-se o fragmoplasmo, um conjunto de microtúbulos protéicos semelhantes aos do fuso de divisão. Os microtúbulos do fragmoplasto funcionam como andaimes que orientam a deposição de uma placa celular mediana semelhante a um disco, originada de vesículas fundidas do sistema golgiense. Progressivamente, a placa celular cresce em direção à periferia e, ao mesmo tempo, no interior da vesícula, ocorre a deposição de algumas substâncias, entre elas, pectina e hemicelulose, ambos polissacarídeos. De cada lado da placa celular, as membranas fundidas contribuem para a formação, nessa região, das membranas plasmáticas das duas novas células e que acabam se conectando com a membrana plasmática da célula-mãe. Em continuação à formação dessa lamela média, cada célula-filha, deposita uma parede celulósica primária, do lado de fora da membrana plasmática. A parede primária acaba se estendendo por todo o perímetro da célula. Simultaneamente a parede celulósica primária da célula-mãe é progressivamente desfeita, o que permite o crescimento de cada célula-filha, cada qual dotada, agora, de uma nova parede primária. Então, se pudéssemos olhar essa região mediana de uma das células, do citoplasma para fora, veríamos, inicialmente, a membrana plasmática, em seguida a parede celulósica primária e, depois, a lamela média. Eventualmente, uma parede secundária poderá ser depositada entre a membrana plasmática e a parede primária.


A mitose serve para...
A mitose é um tipo de divisão muito freqüente entre os organismos da Terra atual. Nos unicelulares, serve à reprodução assexuada e à multiplicação dos organismos. Nos pluricelulares, ela repara tecidos lesadosrepões células que normalmente morrem e também está envolvida no crescimento.
No homem, a pele, a medula óssea e o revestimento intestinal são locais onde a mitose é freqüente. Nem todas as células do homem, porém, são capazes de realizar mitose. Neurônios e célula musculares são dois tipos celulares altamente especializados em que não ocorre esse tipo de divisão (ocorre apenas na fase embrionária). Nos vegetais, a mitose ocorre em locais onde existem tecidos responsáveis pelo crescimento, por exemplo, na ponta de raízes, na ponta de caules e nas gemas laterais. Serve também para produzir gametas, ao contrário do que ocorre nos animais, em que a meiose é o processo de divisão mais diretamente associado à produção das células gaméticas.
 O Controle do Ciclo Celular e a Origem do Câncer
Como sabemos, a interfase é um período de intensa atividade metabólica e de maior duração do ciclo celular. Células nervosas e musculares, que não se dividem por mitose, mantêm-se permanentemente na interfase, estacionadas no período chamado G0.
Nas células que se dividem ativamente, a interfase é seguida da mitose, culminando na citocinese. Sabe-se que a passagem de uma fase para outra é controlada por fatores de regulação - de modo geral protéicos – que atuam nos chamados pontos de checagem do ciclo celular. Dentre essas proteínas, se destacam as ciclinas, que controlam a passagem da fase G1 para a fase S e da G2 para a mitose.
Se em algumas dessas fases houver alguma anomalia, por exemplo, algum dano no DNA, o ciclo é interrompido até que o defeito seja reparado e o ciclo celular possa continuar. Caso contrário, a célula é conduzida à apoptose (morte celular programada).
Outro ponto de checagem é o da mitose, promovendo a distribuição correta dos cromossomos pelas células-filhas. Perceba que o ciclo celular é perfeitamente regulado, está sob controle de diversos genes e o resultado é a produção e diferenciação das células componentes dos diferentes tecidos do organismo. Os pontos de checagem correspondem, assim, a mecanismos que impedem a formação de células anômalas.


A origem das células cancerosas está associada a anomalias na regulação do ciclo celular e à perda de controle da mitose. Alterações do funcionamento de genes controladores do ciclo celular, em decorrência de mutações, são relacionados ao surgimento de um câncer. Duas classes de genes, os proto-onco-genes e os genes supressores de tumor são os mais diretamente relacionados à regulação do ciclo celular. Os proto-oncogenes são responsáveis pela produção de proteínas que atuam na estimulação do ciclo celular, enquanto os genes supressores de tumor são responsáveis pela produção de proteínas que atuam inibindo o ciclo celular.
Dizendo de outro modo:
Os proto-oncogenes, quando ativos, estimulam a ocorrência de divisão celular e os genes supressores de tumor, quando ativos, inibem a ocorrência de divisão celular. O equilíbrio na atuação desses dois grupos de genes resulta no perfeito funcionamento do ciclo celular.
Mutações nos proto-oncogenes os transformam em oncogenes ( genes causadores de câncer). As que afetam os genes supressores de tumor perturbam o sistema inibidor e o ciclo celular fica desregulado, promovendo a ocorrência desordenada de divisões celulares e o surgimento de células cancerosas, que possuem as seguintes características:
  • são indiferenciadas, não contribuindo para a formação natural dos tecidos,
  • seus núcleos são volumosos e com um número anormal de cromossomos;
  • empilham-se sobre a outras em várias camadas, originando um aglomerado de células que forma um tumor. Se ficar restrito ao local de origem e for encapsulado, diz-se que o tumor é benigno, podendo ser removido;
  • nos tumores malignos, ocorre a metástase, ou seja, as células cancerosas abandonam o local de origem, espalham-se por via sangüínea ou linfática, e invadem outros órgãos. Esse processo é acompanhado por uma angiogênese, que é a formação de inúmeros vasos sanguíneos responsáveis pela nutrição das células cancerosas.
Outra ocorrência envolvendo alterações do ciclo celular é relativa aos telômeros, que são segmentos de moléculas de DNA com repetições de bases que atuam como “capas protetoras” da extremidade dos cromossomos.
Em células humanas normais, a cada ciclo celular os telômeros são progressivamente encurtados, as extremidades dos cromossomos ficam cada vez mais curtas, até atingir um limite mínimo de tamanho incompatível com a vida da célula, paralisando-se as divisões celulares e sinalizando o fim da vida da célula.
Em células cancerosas esse limite é transposto graças a atividade de uma enzima , atelomerase, que atua na reposição constante dos telômeros, mantendo-os sempre com o tamanho original, permitindo assim, que as células se dividam continuamente e se tornem praticamente “imortais”.

 Meiose

Diferentemente da mitose, em que uma célula diplóide, por exemplo, se divide formando duas células também diplóides (divisão equacional), a meiose é um tipo de divisão celular em que uma célula diplóide produz quatro células haplóides, sendo por este motivo uma divisão reducional.
Um fato que reforça o caráter reducional da meiose é que, embora compreenda duas etapas sucessivas de divisão celular, os cromossomos só se duplicam uma vez, durante a interfase – período que antecede tanto a mitose como a meiose. No início da interfase, os filamentos de cromatina não estão duplicados. Posteriormente, ainda nesta fase, ocorre a duplicação, ficando cada cromossomo com duas cromátides.

As várias fases da meiose
A redução do número cromossômico da célula é importante fator para a conservação do lote cromossômico das espécies, pois como a meiose formam-se gametas com a metade do lote cromossômico. Quando da fecundação, ou seja, do encontro de dois gametas, o número de cromossomos da espécie se restabelece.
Podemos estudar a meiose em duas etapas, separadas por um curto intervalo, chamado intercinese. Em cada etapa, encontramos as fases estudadas na mitose, ou seja, prófase, metáfase, anáfase e telófase.
Vamos supor uma célula 2n = 2 e estudar os eventos principais da meiose nessa célula.

Meiose I (Primeira Divisão Meiótica)

Prófase I – É a etapa mais marcante da meiose. Nela ocorre o pareamento dos cromossomos homólogos e pode acontecer um fenômeno conhecido como crossing-over (também chamado de permuta)
Como a prófase I é longa, há uma seqüência de eventos que, para efeito de estudo, pode ser dividida nas seguintes etapas:
  • Inicia-se a espiralação cromossômica. É a fase de leptóteno (leptós = fino), em que os filamentos cromossômicos são finos, pouco visíveis e já constituídos cada um por duas cromátides.
  • Começa a atração e o pareamento dos cromossomos homólogos; é um pareamento ponto por ponto conhecido como sinapse (o prefixo sin provém do grego e significa união). Essa é a fase dezigóteno (zygós = par).
  • A espiralação progrediu: agora, são bem visíveis as duas cromátides de cada homólogo pareado; como existem, então, quatro cromátides, o conjunto forma uma tétrade ou par bivalente. Essa é a fase de paquíteno (pakhús = espesso).
  • Ocorrem quebras casuais nas cromátides e uma troca de pedaços entre as cromátides homólogas, fenômeno conhecido como crossing-over (ou permuta). Em seguida, os homólogos se afastam e evidenciam-se entre eles algumas regiões que estão ainda em contato. Essas regiões são conhecidas como quiasmas (qui corresponde à letra “x” em grego). Os quiasmas representam as regiões em que houve as trocas de pedaços. Essa fase da prófase I é o diplóteno (diplós = duplo).
  • Os pares de cromátides fastam-se um pouco mais e os quiasmas parecem “escorregar” para as extremidades; a espiralação dos cromossomos aumenta. è a última fase da prófase I, conhecida por diacinese (dia = através; kinesis = movimento).
Enquanto acontecem esses eventos, os centríolos, que vieram duplicado da interfase, migram para os pólos opostos e organizam o fuso de divisão; os nucléolos desaparecem; a carioteca se desfaz após o término da prófase I, prenunciando a ocorrência da metáfase I.


Metáfase I – os cromossomos homólogos pareados se dispõem na região mediana da célula; cada cromossomo está preso a fibras de um só pólo.
Anáfase I – o encurtamento das fibras do fuso separa os cromossomos homólogos, que são conduzidos para pólos opostos da célula, não há separação das cromátides-irmãs. Quando os cromossomos atingem os pólos, ocorre sua desespiralação, embora não obrigatória, mesmo porque a segunda etapa da meiose vem a seguir. Às vezes, nem mesmo a carioteca se reconstitui.
Telófase I – no final desta fase, ocorre a citocinese, separando as duas células-filhas haplóides. Segue-se um curto intervalo a intercinese, que procede a prófase II.


Meiose II (segunda divisão meiótica)
Prófase II – cada uma das duas células-filhas tem apenas um lote de cromossomos duplicados. Nesta fase os centríolos duplicam novamente e as células em que houve formação da carioteca, esta começa a se desintegrar.
Metáfase II - como na mitose, os cromossomos prendem-se pelo centrômero às fibras do fuso, que partem de ambos os pólos.
Anáfase II – Ocorre duplicação dos centrômeros, só agora as cromátides-irmãs separam-se (lembrando a mitose).
Telófase II e citocinese – com o término da telófase II reorganizam-se os núcleos. A citocinese separa as quatro células-filhas haplóides, isto é, sem cromossomos homólogos e com a metade do número de cromossomos em relação à célula que iniciou a meiose.

  Variabilidade: Entendendo o crossing-over

A principal conseqüência da meiose, sem dúvida, é o surgimento da diversidade entre os indivíduos que são produzidos na reprodução sexuada da espécie.
A relação existente entre meiose e variabilidade é baseada principalmente na ocorrência de crossing-over.
O crossing é um fenômeno que envolve cromátides homólogas. Consiste na quebra dessas cromátides em certos pontos, seguida de uma troca de pedaços correspondentes entre elas.
As trocas provocam o surgimento de novas seqüências de genes ao longo dos cromossomos. Assim, se em um cromossomo existem vários genes combinados segundo uma certa seqüência, após a ocorrência do crossing a combinação pode não ser mais a mesma. Então, quando se pensa no crossing, é comum analisar o que aconteceria, por exemplo, quanto à combinação entre os genes alelos A e a e Bb no par de homólogos ilustrados na figura.
Nessa combinação o gene A e B encontram-se em um mesmo cromossomo, enquanto ab estão no cromossomo homólogo. Se a distância de A e B for considerável, é grande a chance de ocorrer uma permuta. E, se tal acontecer, uma nova combinação gênica poderá surgir.
As combinações Ab e aB são novas. São recombinações gênicas que contribuem para a geração de maior variabilidade nas células resultantes da meiose. Se pensarmos na existência de três genes ligados em um mesmo cromossomo (A, b e C, por exemplo), as possibilidades de ocorrência de crossings dependerão da distância em que os genes se encontram – caso estejam distantes, a variabilidade produzida será bem maior.
Outro processo que conduz ao surgimento de variabilidade na meiose é a segregação independente dos cromossomos. Imaginando-se que uma célula com dois pares de cromossomos homólogos (A e a, B e b), se divida por meiose, as quatro células resultantes ao final da divisão poderão ter a seguinte constituição cromossômica: (a e b), (a e B), (A e b) e (A e B).
A variabilidade genética existente entre os organismos das diferentes espécies é muito importante para a ocorrência da evolução biológica. Sobre essa variabilidade é que atua a seleção natural, favorecendo a sobrevivência de indivíduos dotados de características genéticas adaptadas ao meio. Quanto maior a variabilidade gerada na meiose, por meio de recombinação gênica permitida pelo crossing-over, maiores as chances para a ação seletiva do meio.

Na meiose a variação da quantidade de DNA pode ser representada como no gráfico ao lado, partindo-se, por exemplo, de uma célula que tenha uma quantidade 2C de DNA em G1


Gametogênese


Gametogênese é o processo pelo qual os gametas são produzidos nos organismos dotados de reprodução sexuada. Nos animais, a gametogênese acontece nas gônadas, órgãos que também produzem os hormônios sexuais, que determinam as características que diferenciam os machos das fêmeas.

O evento fundamental da gametogênese é a meiose, que reduz à metade a quantidade de cromossomos das células, originando células haplóides. Na fecundação, a fusão de dois gametas haplóides reconstitui o número diplóide característico de cada espécie.

Em alguns raros casos, não acontece meiose durante a formação dos gametas. Um exemplo bastante conhecido é o das abelhas: se um óvulo não for fecundado por nenhum espermatozóide, irá se desenvolver por mitoses consecutivas, originando um embrião em que todas as células são haplóides. Esse embrião haplóide formará um indivíduo do sexo masculino. O desenvolvimento de um gameta sem que haja fecundação chama-se partenogênese. Se o óvulo for fecundado, o embrião 2n irá originar uma fêmea.

Em linhas gerais, a gametogênese masculina (ou espermatogênese) e a gametogênese feminina (ovogênese ou ovulogênese) seguem as mesmas etapas.

A Espermatogênese

Processo que ocorre nos testículos, as gônadas masculinas. Secretam a testosterona, hormônio sexual responsável pelo aparecimento das características sexuais masculinas: aparecimento da barba e dos pêlos corporais em maior quantidade, massa muscular mais desenvolvida, timbre grave da voz, etc.

As células dos testículos estão organizadas ao redor dos túbulos seminíferos, nos quais os espermatozóides são produzidos. A testosterona é secretada pelas células intersticiais. Ao redor dos túbulos seminíferos, estão as células de Sertoli, responsáveis pela nutrição e pela sustentação das células da linhagem germinativa, ou seja, as que irão gerar os espermatozóides.


Nos mamíferos, geralmente os testículos ficam fora da cavidade abdominal, em uma bolsa de pele chamada bolsa escrotal. Dessa forma, a temperatura dos testículos permanece aproximadamente 1° C inferior à temperatura corporal, o que é ideal para a espermatogênese.
A espermatogênese divide-se em quatro fases:
Fase de proliferação ou de multiplicação: Tem início durante a vida intra-uterina, antes mesmo do nascimento do menino, e se prolonga praticamente por toda a vida. As células primordiais dos testículos, diplóides, aumentam em quantidade por mitoses consecutivas e formam as espermatogônias .

Fase de crescimento
: Um pequeno aumento no volume do citoplasma das espermatogônias as converte em espermatócitos de primeira ordem, também chamados espermatócitos primários ou espermatócitos I, também diplóides.

Fase de maturação
: Também é rápida, nos machos, e corresponde ao período de ocorrência da meiose. Depois da primeira divisão meiótica, cada espermatócito de primeira ordem origina dois espermatócitos de segunda ordem (espermatócitos secundários ou espermatócitos II). Como resultam da primeira divisão da meiose, já são haplóides, embora possuam cromossomos duplicados. Com a ocorrência da segunda divisão meiótica, os dois espermatócitos de segunda ordem originam quatro espermátides haplóides.
Espermiogênese: É o processo que converte as espermátides em espermatozóides, perdendo quase todo o citoplasma. As vesículas do complexo de Golgi fundem-se, formando o acrossomo, localizado na extremidade anterior dos espermatozóides. O acrossomo contém enzimas que perfuram as membranas do óvulo, na fecundação.
Os centríolos migram para a região imediatamente posterior ao núcleo da espermátide e participam da formação do flagelo, estrutura responsável pela movimentação dos espermatozóides. grande quantidade de mitocôndrias, responsáveis pela respiração celular e pela produção de ATP, concentram-se na região entre a cabeça e o flagelo, conhecida como peça intermediária.
 A Ovogênese

Nos ovários, encontram-se agrupamentos celulares chamados folículos ovarianos de Graff, onde estão as células germinativas, que originam os gametas, e as células foliculares, responsáveis pela manutenção das células germinativas e pela produção dos hormônios sexuais femininos.

Nas mulheres, apenas um folículo ovariano entra em maturação a cada ciclo menstrual, período compreendido entre duas menstruações consecutivas e que dura, em média, 28 dias. Isso significa que, a cada ciclo, apenas um gameta torna-se maduro e é liberado no sistema reprodutor da mulher.

Os ovários alternam-se na maturação dos seus folículos, ou seja, a cada ciclo menstrual, a liberação de um óvulo, ou ovulação, acontece em um dos dois ovários.




A ovogênese é dividida em três etapas:
Fase de multiplicação ou de proliferação: É uma fase de mitoses consecutivas, quando as células germinativas aumentam em quantidade e originam ovogônias. Nos fetos femininos humanos, a fase proliferativa termina por volta do final do primeiro trimestre da gestação. Portanto, quando uma menina nasce, já possui em seus ovários cerca de 400 000 folículos de Graff. É uma quantidade limitada, ao contrário dos homens, que produzem espermatogônias durante quase toda a vida.

Fase de crescimento: Logo que são formadas, as ovogônias iniciam a primeira divisão da meiose, interrompida na prófase I. Passam, então, por um notável crescimento, com aumento do citoplasma e grande acumulação de substâncias nutritivas. Esse depósito citoplasmático de nutrientes chama-se vitelo, e é responsável pela nutrição do embrião durante seu desenvolvimento.

Terminada a fase de crescimento, as ovogônias transformam-se em ovócitos primários (ovócitos de primeira ordem ou ovócitos I). Nas mulheres, essa fase perdura até a puberdade, quando a menina inicia a sua maturidade sexual.

Fase de maturação: Dos 400 000 ovócitos primários, apenas 350 ou 400 completarão sua transformação em gametas maduros, um a cada ciclo menstrual. A fase de maturação inicia-se quando a menina alcança a maturidade sexual, por volta de 11 a 15 anos de idade.

Quando o ovócito primário completa a primeira divisão da meiose, interrompida na prófase I, origina duas células. Uma delas não recebe citoplasma e desintegra-se a seguir, na maioria das vezes sem iniciar a segunda divisão da meiose. É o primeiro corpúsculo (ou glóbulo) polar.

A outra célula, grande e rica em vitelo, é o ovócito secundário (ovócito de segunda ordem ou ovócito II). Ao sofrer, a segunda divisão da meiose, origina o segundo corpúsculo polar, que também morre em pouco tempo, e o óvulo, gameta feminino, célula volumosa e cheia de vitelo.

Na gametogênese feminina, a divisão meiótica é desigual porque não reparte igualmente o citoplasma entre as células-filhas. Isso permite que o óvulo formado seja bastante rico em substâncias nutritivas.

Na maioria das fêmeas de mamíferos, a segunda divisão da meiose só acontece caso o gameta seja fecundado. Curiosamente, o verdadeiro gameta dessas fêmeas é o ovócito II, pois é ele que se funde com o espermatozóide.

 Fecundação: A volta à Diploidia

Para que surja um novo indivíduo, os gametas fundem-se aos pares, um masculino e outro feminino, que possuem papéis diferentes na formação do descendente. Essa fusão é a fecundação ou fertilização.

Ambos trazem a mesma quantidade haplóide de cromossomos, mas apenas os gametas femininos possuem nutrientes, que alimentam o embrião durante o seu desenvolvimento. Por sua vez, apenas os gametas masculinos são móveis, responsáveis pelo encontro que pode acontecer no meio externo (fecundação externa) ou dentro do corpo da fêmea (fecundação interna). Excetuando-se muitos dos artrópodes, os répteis, as aves e os mamíferos, todos os outros animais possuem fecundação externa, que só acontece em meio aquático.



Quando a fecundação é externa, tanto os machos quanto as fêmeas produzem gametas em grande quantidade, para compensar a perda que esse ambiente ocasiona. Muitos gametas são levados pelas águas ou servem de alimentos para outros animais. Nos animais dotados de fecundação interna, as fêmeas produzem apenas um ou alguns gametas por vez, e eles encontram-se protegidos dentro do sistema reprodutor.
Além da membrana plasmática, o óvulo possui outro revestimento mais externo, a membrana vitelínica. Quando um espermatozóide faz contato com a membrana vitelínica, a membrana do acrossomo funde-se à membrana do espermatozóide (reação acrossômica), liberando as enzimas presentes no acrossomo.

As enzimas do acrossomo dissolvem a membrana vitelínica e abrem caminho para a penetração do espermatozóide. Com a fusão da membrana do espermatozóide com a membrana do óvulo, o núcleo do espermatozóide penetra no óvulo. Nesse instante, a membrana do óvulo sofre alterações químicas e elétricas, transformando-se na membrana de fertilização, que impede a penetração de outros espermatozóides.

No interior do óvulo, o núcleo do espermatozóide, agora chamado pró-núcleo masculino, funde-se com o núcleo do óvulo, o pró-núcleo feminino. Cada pró-núcleo traz um lote haplóide de cromossomos, e a fusão resulta em um lote diplóide, o zigoto. Nessa célula, metade dos cromossomos tem origem paterna e metade, origem materna.